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ABSTRACT

Mountain ecosystems, essential lor global biodiversity and
human well-being, undergo rapid changes due to climate
change and human influence. The Mountain Green Cover
Index (MGCT) measures the percentage of green vegetation
ACTOSS mountain areas, aiming o assess and monitor the
health and conservation of mountain ccosysicms, MGC]
requires ongoing monitoring and distinction by land cover
(LC) type, however, challenges arise from the limied
temporal and spatial resolution of available LC products. Tn
addition. existing methods face issues due to complex terrain
in mountains, This study leverages Deep Learning on
Sentinel-2 data to overvome these limitations, and map LC
categories for the MGCIT at a national seale. Emploving wenk
and sparse labels from the CORINE Land Cover dataset, the
approach alleviates the need of large-scale manual sample
collection and provides & roadmap for national statistical
servives to compute the MGCL

findex  Terms— land  cover, Sentinel-2,  sparse
annotations, weakly supervised learming, deep learning

L INTRODUCTION

Mountain  ecosystems embody mest of the world's
biodiversity and provide many ecosystem  services,
contributing directly and indirectly to the well-being of at
least half of the world's human population [1]. Under the
influcnce of both climate change and human activities,
mountain ecosvstems are undergoing rapid changes and
therefore moniloring their health is of significant importance
for their conservation [2], [3].

The United MNations (UN) targets the preservation of
mountain - ecosystems by 2030 through  Sustainable
Development Goal (SDG) 15, emphasizing biodiversity
conservation and sustainable development. The pivotal
monitoring tool is the Mountain Green Cover Index (MGCI),
specifically Indicator 15.4.2, which involves determining the
percentage of green wvegeiation across mountain  areas
{forests, grasslands, croplands and wetlands). It is calculated
using the following formula [4]:
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While MGCT data is available on national, regional, and
global scales, current calculation systems have limitations,
The Indicator’s  static nature necessitates  continuous
monitoring for trend analysis. The temporal and spatial
resolution of off-the-shelf land cover (LC) products used
impedes accurate racking of mountain changes. In addition,
defining "green” poses challenges, as cultivated areas may
misrepresent mountain health, emphasizing the importance of
distinguishing between LC types for precise monitoring [2],

[4]-16].

Remote sensing satellite data is pivotal for assessing
vegetation in challenging mountainous ferrains and can allow
spatial and temporal separation of the MGCI [2]. However,
despite these advantages, mapping LC in mountainous areas
remains a challenge due to topographic complexities causing
shadows and illumination variations, Challenges include
limited samples in rugged, inaccessible areas, data loss from
cloud cover, and differences in vegetation phenological
eveles at different  elevatons  [7]-[10]. Conscquently,
traditional Machine Leamning (ML) methods face accuracy
issues due to the diverse mountainous spectra, To address
these challenges, previous stodies  integrated  Digital
Elevation Models, Synthetic Aperture Radar, and advanced
time-series algorithms [7], [11]-[13]. however requiring
temporal data and feature engineering. Recently developed
Deep Learning {DL) methods can overcome these limitations
and alleviate the need of manual sample collection to cover
speciral variations within classes, In contrast o traditional
ML methods, DL algorithms can handle complex terrain
objects with significant variation and are invariant to
relatively large distortions, including different shapes. sizes,
roations, and lighting conditions, They can discern objects
belonging o different categories but appearing similar in
some other aspect [14], [15]. However, the lack of a large,
tailored training dataset for mountainous regions remains a
challenge for DL methods [8]. Weak supervision in DL,
involves building predictive models with either i) a sparse
number of reference data, ii) inexact information, or iii)
reference data containing errors [16].
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Specifically, for MGCIL, two recent studies were
conducted on a global and national seale wsing Landsat
satellite images and phenology based on the NDWVI index [2],
[5]. Another study [6] utilized LC CCI products and the
mountainens areas level from [17], as recommended by the
UN methodology. Few studies have explored the contribution
of DL algorithms to LC mapping in mountalnous areas in
general,  cither wsing  additional  image  segmentation
technigues [8] or multi-sensor temporal images [15],

This study focuses on mapping LC caiegories required
for Indicator 15.4.2 in mountainous areas using Senlinel-2
data at a national scale. DL is employed for classifving the
images, utilizing weak and sparse labels from the CORINE
Land Cover (CLC) product.

To facilitate the demanding training of the DL network
in this study, freely available computational resources from
Google were used, specifically through Google Colaboratory
which provides direct access to the Google Farth Engine
(GEL) cloud platform. The Python code developed utilizes
the Tensorflow and keras libraries.

2. MATERIALS AND METHODS

2.1, Study Area and Data

The study area was the entire terrestrial region of Greece,
extending by 2km to cover parts of the sea and land that
extend into neighboring regions. Greece covers an
approximate area of 131,957 km?, and geomorphologically,
T8% of the area is covered by mountains according to [18],

Manual collection of samples lor mnational-scale
mapping, especially for DL algorithms that require a large
amount of data, would require tremendous efforts. However,
available LC products can be used as data sources to address
the problem, with a suitable ¢lass correspondence and a
carcful sampling process. ln this direction, for the creation of
reference samples, the most recent (2018) CORINE Land
Cover (CLCY dataset was utthized, for automated relerence
data creation, consistent with other national-scale studies.
The CLC dataset covers the entire European region, including
Greece, it 1s updated approximately every 4 years and is also
freely accessible. With a Minimum Mapping Unit of 23
hectares, it deseribes land use and land cover with 4 set of 44
calegories organized mio three hicrarchical levels. The
specific choice of this land cover product over others was
motivated by the simultaneous coverage of all categories
required by Indicator 15.4.2, with high reliabality, despite its
relatively low spatial accuracy.

Copernicus  Sentinel-2  satellite  data,  providing
continuous tree data, was used in this study to develop a
methodology that could he easily applied in other reference
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periods. The Sentinel-2 data is available in Analysis Ready
Diata (ARD) format in GEE. All L2A images with cloud
cover below 20% were selected, covering the study area from
May 2018 to September 2018, to align with year of the CLC
data used to create reference data. The late-spring/summer
period was considered sufficient for capturing general fand
cover categories, such as those of the |PCC classification
system, and for Greece offered snow-free and minimal
shadow effects, ideal for mapping land cover in mountainous
areas [19]. [20].

2.2, Data preprocessing

Processing of satellite images was carried out in GEE. A
cloud  and  shadow  mask  algorithm,  following  the
methodology of [21]. was applied. To achieve spatially
homogeneous images for the entire country and allow a
unified processing framework, 2 seasonal temporal
composites based on median reflectance values per pixel and
per band were created. For the spring composite, May and
June images were used while for the summer composite, the
images used were from July to September [22],

The CLC categories were matched with those of the CCI
LC product, used in the UN's Indicator methodology. They
were then grouped into broader categories of the IPCC
classification scheme, based on the class correspondence in
[23]. Classes with mixed coverage were excluded from the
analysis (Classes 2.4, "Heterogeneous Agricultural Areas”
and 3.2.4, "I'ransitional Wooded Shrubland Areas"), leaving
gaps and thus making the labeled data "sparse”, The omission
of information from reference samples, combined with the
use of reference samples with reduced spatial accuracy
compared to the satellite data, characterizes this as a learning
problem under the paradigm of "weak supervision”,
Specifically, the CLC samples can be  described as
"incomplete” due to their "sparse” nature but also "inexact”
due to the reduced spatial accuracy they provide [16].

2.3. Mountain Green Cover Index

The primary variable for mapping MGCI was "green cover,”
essentially referring to LC mapping into 6 classes (forests,
grasslands, croplands, wetlands, settlements, and other fand),
Mapping LC at the national level using satellite imagery
poses a complex problem, especially in mountainous regions
where rugged temain can affect reflectance wvalues. In
addition, collecting reference samples on such large scales
and model feature selection are also significant challenges.

Begarding total mountain area, the UN document for
Indicator 1542 utilizes the Kapos product [I7] as a
definition and was therefore used in this study. For Greece,
the total mountainous area according to the Kapos produet is
Td.454.673km=, or 56.42% of the country.



2.3 1. Sample generation

To minimize the difficult and time-consuming process of
manual sampling, information from open geospatial dats was
utilized in an automated manner. Additionally, a DL
algorithm  was  chosen  over  traditional  classification
algorithms, providing not only relief from the difficult
parameter selection process but also achieving high accuracy
given the low quality of reference samples,

The creation of the reference samples was based on
spatial partitioning into  fully independent regions for
tramning, validation, and control sample acquisition [24], [25].
At first, a 50km prid was used to partition the country into
independent  training/validation  and  test  regions.
Subsequently, for each set of regions, within a 5120m grid,
28% of the total polygons (14% each) were randomly
selected 1o create the training/validation and 158% to create
the test patches [26] (Figure 1), Sample images of 2356 pixels
were randomly generated in cach patch. After performing
data augmentation, [0.000 training and 10,000 validation
images were used in the model. Only for the test samples,
10m-LC information generated by the LIFE-IP 4 NATURA'
project was utilized. This data was created through a semi-
automated process and validated via photomterpretation.
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Figure 1. Training, validation and test regions and patches,
Basemap: Esri.

2.3.2 Features and mode!

The 10 features used in the model were based on a similar
study [8] for LC mapping in mountain regions using DL and
can be seen in Table 1.

We chose to use a model whose code is available [27]
and was developed o work for 82 data and sparse reference
data, as in our case. We used the Adam optimizer 28], which
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achieves faster convergence in cases of "sparse” data and in
complex models [29], and categorical cross-entropy loss
function [30]. More specifically, we used weighted
categorical  cross-entropy loss  to manage  unevenly
distributed per-class reference data [27]. The weights tor each
class were calculated by dividing the log of the total area
percentage of all classes in the reference data by the arca
percentage of each class. A further normalization was
performed on the resulting weight values, by dividing each
value by the total weights, to avoid large variations in the
weight values, due to the large differences in LC arcas. The
network was trained for 10 epochs in total, with a batch size
of 6. A learning rate of 0,001 was set for the first 5 epochs,
and 0.0001 for the other 5. Finally, the model with the lowest
validation loss was used to predict LC at 10m spatial
resolution,

Table 1 Features used in the classification model.

lmage Features

Spring composite B2, B3, B4, B8, NDVI
Summer composite B2, B3, B4, BE, NDVI
Sum 10

2.3.3. dccuracy Assessment

The model's learning performance was measured using the
loss function value at each epoch. Additionally. categorical
acouracy was calculated [27] and the error matrix, using 2500
randomly  pencrated control  points within and  oulside
mountainous regions, From the error matrix, standardized
accuracy metrics were derived, mcluding Overall Accuracy
{OA), Producer’s Accuracy (PA), and User’s Accuracy (UA)
[31]. Fimally, a cross-tabulation matrix was created to
measure the agreement between the classified pixels and
those in the ESA CCILC product.

3. RESULTS AND DISCUSSION

The final value of Indicator 15.4.2 calculated for 2018, was
93.54%. For the same year, the United Nations Economic
Commission for Europe (UNECE). for Greece, reports a
vitlue of 97.42%7%, while Our World in Data, reports a value
of 97.53%°,

The total green cover, by aggregating all sub-categorics
(Torests, grassland, cropland, and wetlands), sums up to
69,643,776km", while the non-green categories occupy an
area of 4,810,897km?, The total area of each green cover sub-
category. for the mountainous areas, was:

- Farests; 29,225, 738km*

- Shrublands & Grasslands: 22,520,327km?
- Cultivated land: 17,680,949%km*

- Wetlands: 216,762km?

3 htpssfourworldindats. ore‘grapher mouniin-groen-tover-
index'repion=Eunope




The OA was 68.65%: for all classes, while considering
only the "zreen" classes, it reached 73.04%. When reducing
the problem to a binary classification of "green” and "non-
green” arcas. the OA was E821%. These results are in
agreement with other studies using weak labels [32].
Settlements, wetlands and "other land”, proved to be guite
difficult to map. due to high inter-class variations, weak class
representation or low spatial resolution of the reference data,
Overall, it can be noted that the very generalised
classification scheme created difficultics in mapping such an
exiensive area. The PA and UA metrics (Table 2} Turther
revealed that large omission errors were present for wetlands
and 'other land', while commission errors were present, but to
a lesser extent, for the categories 'croplands, "grasslands’ and
"wetlands',

Table 2. Producer’s and User's accuracies derived from the
EITOr MAtrix,

Class Pa UA
Green cover  Forest 075 083
Shrubland & Grassland  0.7% 059
Cropland 075 058
Wetland 011 o063
Non-green Settlement 074 076
Dther 055  0.86

Figure 2 Classification results (¢.Li), compared to the CLC
reference data (b.e.h), and Google Earth imagery of each case

{a.d,g).

The cross-tabulations between the LC categories denved
from the ESA CCl LC product and the categories derived
from the model revealed an overall agreement of 62.91% for
the countrv-wide classificatbon and  57.23% in  the
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mountainous areas for the 6 categories, with discrepancies
especially in wetlands and settbements. which may be due to
the significant difference in their spatial resolution,

Visual evaluation of the results (Figure 2) showed
improved spatial resolution, compared to the reference data
from CLC. In particular, the result is similar to that of a
traditional pixel-based classifier (e.g. Random Forest). At the
locations. from which the sample images were generated, the
classification contributed by improving the spatial resolution,
compared to the reference "inexact” data, and by predicting
the coverage, in pixels that lacked information due to
"incomplele supervision” of the CLC data (Figure 2 - a-¢, g-
i), In areas with a complete lack of information, it also
mapped the LC satistfactorily (Figure 2 - d-f).

Regarding the DL models aceuracy and loss (Figure 3),
for the epochs trained, the validation loss was lower than the
trainmyg loss, indicating that the model was underfitted and
thus, required more tramning epochs [33]. Other reasons for
this may be the dropout layers of the model, or the fact that
the validation loss is caleulated at the end of each epoch,
while the training loss 1s calculated in cach batch [34)]. The
loss function curves, decreased only slightly per epoch.
suggesting that the number of data is too small for the
complexity of the problem [35], however, the model was
learning in & correct way,

Categont ol Accibficy
| Inbeled oy

Categorical Croessmipory [oss

Ty, T s e A

Figure 3 Model accuracy and loss curves.

DL algorithms, combined with available open data for
sample creation, have been used in other studies. In two
recent studies [25], [36], LC mapping at the national level
was performed using transfer learning from pre-trained
models with data from the CLC product. The differentiation
of this study fom the mentioned ones lies not only in ils
application to mountainous areas with challenging terrain but
also i the use of weak and sparse reference data, without
using transfer learning from pre-trained models,

The developed methodology can serve as a roadmap by
national statistical services for calculating Indicator 15.4.2,
bvpassing the tme-consuming and costly process of
collecting reference samples.

The code used in this study is available in the GITHUR
repository., al the following link: https:/ethub.comin-
verde/Indicator 15.4.2.
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