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ABSTRACT 

 

Conservation and management of biological diversity is 

central to human health and well-being. The EU-funded LIFE 

project “hELlenic BIOodiversity Information System: An 

innovative tool for biodiversity conservation - LIFE EL-

BIOS” project aims to contribute in EU and national policies 

by designing, developing and implementing a central 

biodiversity information system, “EL-BIOS”, operated by the 

Greek Natural Environment and Climate Change Agency 

(NECCA). In this work, we present the development 

framework of the EL-BIOS EO Data Cube, a service that 

provides access to biodiversity indicators and variables in 

analysis ready form, based on Open Data Cube framework 

for big data management and web service applications. Using 

freely available Copernicus Sentinel-2 imagery, six national-

scale and four local-scale biodiversity indicators are 

generated in a spatial and temporal systematic framework for 

assessing and monitoring biodiversity state and condition. 

 

Index Terms— biodiversity conservation, Open Data 

Cube, Satellite Image Time Series, national scale, Analysis 

Ready Data, EO workflows 

 

1. INTRODUCTION 

 

Conservation and management of biological diversity is 

central to human health and well-being. As human activities 

contribute to the ongoing loss of species, there arises an 

escalating imperative to systematically document, 

comprehend, and assess the intricacies of biological diversity 

[1]. Research by the International Union for the Conservation 

of Nature found that the socio-economic systems of food 

production, infrastructure, and energy accounts for around 

80% of the impact on threatened species, as identified by the 

IUCN Red List [2]. Therefore, EU Biodiversity Strategy for 

2030 aims to ensure that Europe's biodiversity will be on the 

path to recovery by 2030, that will require action by citizens, 

businesses and research community to protect and restore 

nature [3]. 

Greece is situated within the Mediterranean basin 

biodiversity hot-spot and hosts an incredible variety of 

ecosystems and species. The uniqueness of Greek nature is 

characterized by high species density, endowed with a variety 

of different ecosystems and landscapes. Notably, Greece has 

a particularly rich and interesting flora, with 5,700 recorded 

species, of which approximately 13.2% are endemic due to 

its complex landscape and morphology [4]. Like the flora, the 

Greek fauna is also notable for its high rate of endemism, with 

a total of 23,130 recorded species of terrestrial and freshwater 

animals as well as 3,500 marine species [4]. According to the 

World Wildlife Fund (WWF), Greece accommodates 8% and 

40% of Europe’s animal and plant species [5]. 

Biodiversity monitoring demands accurate measurement 

of each multi-taxon community, traditionally obtained 

through challenging field surveys [6]. Within this context, 

remote sensing is increasingly employed in biodiversity 

modelling and reporting, bridging the gap between 

biodiversity indicators, paving the way for a more systematic 

sustainable management [7]. Remote sensing provides cost-

efficient observations across broad scales in a consistent 

manner and multitemporal archives, enabling long-term 

dynamics monitoring and change detection [8].  Additionally, 

earth observation (EO) data are distributed under free, full 

and open data policy [9], contributing in the harmonization of 

databases under standard protocols [10]. Between the most 

widely used satellite constellations, Landsat and Sentinel-2, 

numerous biodiversity-oriented studies have been conducted, 

namely, in the analysis of functional diversity and the 
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estimation of structural [11] and spectral [12] diversity, tree 

species diversity [13] and bird richness [14]. 

Numerous biodiversity studies have utilized Landsat’s 

extensive imagery archive, albeit its medium spatiotemporal 

resolution. Concurrently, Sentinel-2 is gaining prominence in 

the monitoring domain as its historic archive grows. 

Moreover, Sentinel-2 provides more bands than Landsat and 

finer spatiotemporal resolution, which could enable a more 

comprehensive biodiversity monitoring [15]. Therefore, to 

manage big data in terms of volume, variety, velocity, and 

veracity [16], with homogenization of both open and 

commercial data, the need of powerful software, data 

structures and standard protocols emerges. 

The necessity to meet the demands of big EO data in 

terms of storage, process and analysis, both in cloud and 

distributed systems, providing access to data in analysis ready 

form [17], has driven the development of such integrated 

systems. A promising solution is represented by EO Data 

Cubes [18] and their variations, such as Google Earth Engine 

(GEE) [19], Euro Data Cube1, OpenEO [20], and Open Data 

Cube (ODC) [21]. In EO Data Cubes ecosystems, open data 

are consumed by cloud providers (e.g. GEE, AWS, Microsoft 

Computer) or regional and national initiatives [22]. In 

particular, ODC functions as an intermediary to facilitate the 

seamless interaction between data and applications, featuring 

a suite of open source-tools and a Python based API for high 

performance data access and querying [23]. Currently ODC 

supports continental, national and regional operational 

initiatives, with some of most important being the Digital 

Earth Australia [24], Digital Earth Africa [25], Digital Earth 

Pacific2, Swiss Data Cube [26], Brazil Data Cube [27], 

Colombian Data Cube [28], and regional cubes in Catalonia 

[29] and Virginia3.  

The aim of this study is to present the conceptualization 

and development framework of the EL-BIOS Data Cube. 

This infrastructure will represent the first national-scale data 

cube, aiming to mainstream EO usage for biodiversity 

management and conservation in Greece. 

Thus, EL-BIOS information system, backed by the EL-

BIOS Data Cube, will contribute to improved policymaking, 

spanning a range of topics, from sustainable management to 

environmental-economic accounting [30]. In an attempt to 

align with the Digital Earth vision [31], the Data Cube is 

providing analysis ready biodiversity indicators, as proxies of 

net primary productivity, vegetation structure and diversity, 

phenology and seasonality of carbon fluxes. These indexed 

products are also being served through OWS (open web 

services) and a web GIS graphical user interface that provides 

visualization and download capabilities. In the remaining 

sections of this manuscript, we present the structure of the 

EL-BIOS Data Cube, the selection of the biodiversity 

indicators, and the development of EO workflows for the 

satellite image time series (SITS) analysis. 

 
1 https://eurodatacube.com/  
2 https://www.spc.int/DigitalEarthPacific  

2. EL-BIOS DATA CUBE 

 

The EL-BIOS Data Cube is a four-fold structure and is 

supported by ODC to index, process, store and serve its data. 

The data index catalogue is hosted in a PostgreSQL database, 

which is initialized under the AGDC schema. After defining 

the products that will be hosted, Sentinel-2 Level-2A Cloud-

Optimized GeoTIFF imagery is indexed in the data cube from 

the Registry of Open Data on Amazon Web Services (AWS) 

S3 Bucket. The Sentinel-2 L2A data cover the wider region 

of Greece (mainland and islands) with 60 MGRS tiles from 

January 2017 to December 2023, with an indexing process 

being executed on a monthly basis to include new 

acquisitions. 

The stages of processing and storing are orchestrated by 

a single API that was built using the FastAPI framework and 

Docker containers, for scalability in both on-premises and 

cloud infrastructures. The Docker image accommodates both 

Python and R functionalities. Το analyze big data we 

deployed a distributed processing architecture, using the 

Dask framework and Docker virtualization technology, for 

parallel processing and scheduling. 

The processing of the archive is conducted per MGRS 

tile. The processing is initialized by a query that filters the 

matching datasets using the ODC Python API and loads the 

data into xarrays, which is a powerful multidimensional 

structure, appropriate for spatiotemporal data. Following the 

EO workflows developed for each biodiversity indicator, the 

computations are distributed to the workers for efficient 

computation and memory management. The final computed 

dataset and its metadata are then stored in the EL-BIOS 

storage archive and indexed back to the EL-BIOS Data Cube. 

The EL-BIOS Data Cube provides data in both visual 

and downloadable formats. Visualization is available through 

datacube-OWS web services (OGC WMS, WMTS and 

WCS). The archive currently hosts 6TB of analysis ready 

biodiversity indicators and variables, which will increase by 

almost 1TB per year with new Sentinel-2 acquisitions. 

 

3. BIODIVERSITY INDICATORS 

 

The identification of biodiversity indicators to be hosted in 

the ELBIOS Data CUBE included meticulous literature 

research and recording of the needs and requirements of 

Greece’s scientific and management communities involved 

in biodiversity conservation and management. 

Due to the rich flora and fauna found in Greece in an 

underlying complex topography, the selection of the 

biodiversity indicators aimed to thoroughly monitor the 

species richness, diversity in plant phenology and structure, 

and primary production. 

Following the testing of HRL Copernicus products, as 

well as indicators reported in biodiversity studies and data 

3 https://www.data4va.org/  
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cube instances, we concluded in six EO-derived biodiversity 

indicators for national-scale coverage, along with three EO-

based variables. Furthermore, two pilot areas have been 

selected for the EL-BIOS project: Northern Pindos National 

Park and Kotychi – Strofylia Wetlands National Park. In the 

context of the project, four additional biodiversity indicators 

have been identified for these pilot areas. These areas will be 

studied as independent local cubes, a methodology frequently 

recommended for data cube analyses [22]. 

3.1. Selected Biodiversity Indicators and Variables 

The EL-BIOS Data Cube will provide six biodiversity 

indicators and three variables on a national scale. Regarding 

the biodiversity indicators, Fractional Vegetation Cover 

(FVC) is an NDVI derived indicator serving as proxy to 

vegetation structure and primary productivity [32]. 

Moreover, the NDVI-based indicators of the Integrated 

NDVI (NDVIIntegral), Intra-Annual Relative Range 

(NDVIIARR) and Date of annual Mode (NDVIDoM), were 

selected as proxies to net primary production [33], 

seasonality of carbon fluxes [34], and vegetation phenology 

and diversity [35], respectively [36]. Additionally, Plant 

Phenology Index (PPI) is a DVI based indicator, using Red 

and NIR bands, and is was selected to model phenological 

diversity [37]. Finally, Leaf Area Index (LAI), is used as a 

proxy to monitor aboveground productivity and plant 

diversity [38]. 

For the pilot areas, additional indicators has been 

selected including among proxies for α-diversity based on 

Shannon index [39], [40], and proxies for cumulative 

productivity, minimum productivity, intra-annual variation of 

productivity obtained by Dynamic Habitat Index [41]. 

On a national scale, three variables, NDVI, Enhanced 

Vegetation Index (EVI) [42], and Surface Albedo [43] are 

being served, with NDVI being used in four biodiversity 

indicators, while EVI was used as an input in the LAI 

indicator. 

3.2. Satellite Image Time Series preprocessing 

Satellite data can be affected by various factors that can lead 

to complexity and errors. These factors include sensor 

resolution and calibration, digital quantization errors, 

terrestrial and atmospheric conditions, as well as orbital and 

sensor degradation. In order to ensure the accuracy of the 

dataset a standard cloud cover range from 0 to 40% was used. 

Utilizing L2A data, SCL image was used to mask high and 

medium cloud probabilities, cloud shadows and thin cirrus, 

with a dilation of 30m. The gaps created in the raw time series 

are then interpolated. The linear method proved to be the 

most suitable between spline and cubic, to provide a more 

generic national-scale solution. However, to ensure optimal 

data quality, it is recommended that time-series be smoothed 

before use, as some noise may remain in the datasets. This 

noise is primarily due to remnant cloud cover, water, snow, 

or shadow. To address fluctuations in the time series, a three-

observation rolling median was used, followed by a Savitzky-

Golay signal smoothing filter with a (𝑚, 𝑑) combination of 

(4,2) was applied. The resulting time series comprises of 60 

observations per year. It is worth noting that PPI was not 

included in this preprocessing workflow due to its model's 

handling of cloud contamination. 

 

Figure 1. Processed NDVI time series and its raw values. 

3.3. Modelling of Biodiversity Indicators 

Regarding the functional indicators derived from the annual 

positive NDVI curve [44], the NDVIIntegral was calculated as 

the sum of NDVI [33], the NDVIIARR was calculated as 

maximum NDVI minus minimum NDVI, divided by 

NDVIIntegral [34], and the NDVIDoM was equal to the date of 

annual maximum NDVI. 

The FVC for each pixel is estimated from the annual 

NDVI time series for each quarter using a linear mixing 

model [45] as: 𝐹𝑉𝐶 =  (𝑁𝐷𝑉𝐼𝑄,𝑚𝑒𝑎𝑛 − 𝑁𝐷𝑉𝐼𝑆) /

 (𝑁𝐷𝑉𝐼𝑉 − 𝑁𝐷𝑉𝐼𝑆), where NDVIQ,mean represents the mean 

value for each quarter, NDVIS denotes the bare soil, and 

NDVIV stands for the dense green vegetation. The method 

used to determine the NDVIS endmember involved selecting 

the 5th percentile of annual maximum NDVI values for barren 

land, as defined by the CORINE Land Cover 2018 classes. 

To calculate NDVIV, it was assumed that 25% of pixels were 

fully vegetated, and the 75th percentile of annual maximum 

NDVI values for all land cover classes was used [45]. 

The Leaf Area Index was calculated as the ratio of the 

one-sided (illuminated) foliage area to the soil surface it can 

cover. The formula used was the linear relationship with EVI 

[38], [42], 𝐿𝐴𝐼 =  3.618 × 𝐸𝑉𝐼 − 0.118, using the annual 

EVI pre-processed time series to obtain monthly LAI metrics.  

The retrieval algorithm of Plant Phenology Index is 

derived from radiative transfer equations and is calculated 

from red and near-infrared (NIR) reflectance. It is designed 

on modified Beer’s law to have nearly linear relationship to 

LAI given a fixed soil effect [37], [46], defined as 𝑃𝑃𝐼 =
 −𝐾 × 𝑙𝑛[(𝑀𝐷𝑉𝐼 − 𝐷𝑉𝐼)/(𝑀𝐷𝑉𝐼 − 𝐷𝑉𝐼𝑆)]. The formula 

uses the difference vegetation index DVI, the quarterly 

maximum DVI MDVI, and DVIS is the quarterly minimum 

DVI of the soil. The gain factor K is formed as a function of 

sun zenith angle θ, a geometric function of leaf angular 

distribution and instantaneous diffuse fraction of solar 

radiation [46]. MDVI and DVIS were obtained 
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spatiotemporally for each 1098×1098 sub-area of the 

included S2 images and upscaled using bicubic interpolation 

to the whole image [47]. Effects of reflectance outliers were 

avoided by setting the upper limit of MDVI to 0.8. 

In the pilot areas selected for the study, α-diversity was 

assessed using biodivMapR [40]. PCA analysis was 

conducted using mean band values from the July and August 

datasets. Spectral species mapping was performed by 

applying k-means clustering to the first four principal 

components derived from PCA. Shannon α-diversity was 

calculated by using a distribution of 50 clusters with 100m 

window sizes across the entire image. For the DHI metrics, 

monthly LAI observations over 5-year periods are averaged 

to a 1-year period, from which cumulative sum, variance and 

minimum metrics are obtained. 

 

Figure 2. The EL-BIOS Data Cube indicators in Valia Kalda 

region within the National Park of Northern Pindos. 

3.4. Service of products 

The generic EO workflow is composed of the data cube 

querying, the time series loading as xarrays, SITS processing, 

the calculation of biodiversity indicator or variable metrics, 

and finally the COGs export and indexing of the outputs. On 

a national scale, FVC, NDVIIntegral, NDVIIARR, NDVIDoM, PPI, 

NDVI, EVI and Albedo products are served as three-month 

composites. LAI product is served as a monthly composite. 

All indicators and variables have a pixel size of 10m, with the 

exception of α-diversity which is 100m. For PPI, LAI, NDVI, 

EVI, and Albedo products, the metrics include mean (Fig. 2), 

median, maximum, minimum, and standard deviation as sub-

products. 

 

4. CONCLUSIONS 

 

Greece has important biodiversity and EL-BIOS project has 

the properties to effectively monitor and report it. Today, an 

operational national-scale biodiversity monitoring data cube 

in Greece does not exists. EL-BIOS Data Cube will be the 

foundation for a standardized biodiversity-oriented SITS 

analysis, when fully operational, populated with a variety of 

analysis ready biodiversity indicators and variables. 

Additionally, the selected pilot areas will serve as local data 

cubes for a more focused modelling on areas of significant 

biodiversity. The usage of EODC technology promotes the 

replicability and reproducibility of the analyses, significantly 

enhancing the operational applicability of EL-BIOS Data 

Cube [48], while Open Standards such as the OGC Web Map 

Service enables time-series analysis directly within a web-

based application [29]. 

The selected analysis ready biodiversity indicators will 

be useful for biodiversity-related researchers that perform 

analyses to correlate field data with EO-derived observations, 

without the need of expertise in remote sensing data 

processing. This way, the necessary interdisciplinarity in 

biodiversity reporting will be supported by standard products 

enhancing more direct research of sustainable management 

and biodiversity conservation. Moreover, the SITS filtering, 

interpolation and smoothing enhances the accuracy and 

robustness of the time series data, providing a foundation for 

the assessment of biodiversity dynamics and associated 

proxies. Finally, the in-service SITS pre-processing analysis 

receives continuous modifications to minimize 

computational costs of memory and time management. 

The EL-BIOS project will contribute to policy changes, 

that until today remain a challenging task, as biodiversity 

state dissemination is not conducted under a single agency. 

The potential for modern sensors to identify areas of 

significance to biodiversity, predict species distributions and 

model community responses to environmental and 

anthropogenic changes, would offer new insights to support 

better policy making issues. 

 

5. AKNOWLEDGMENT 

 

This work has been supported by the European Commission 

LIFE Programme and Green Fund, LIFE EL-BIOS Project 

“hELlenic BIOodiversity Information System: Αn innovative 

tool for biodiversity conservation”, under grant number 

LIFE20 GIE/GR/001317. 

 

6. REFERENCES 
 

7908



[1] F. A. Bazzaz and S. Catovsky, “Resource Partitioning,” in 

Encyclopedia of Biodiversity (Second Edition), S. A. Levin, 

Ed., Waltham: Academic Press, 2001, pp. 429–437. doi: 

10.1016/B978-0-12-384719-5.00123-4. 

[2] World Economic Forum (WEF), “The Future of Nature and 

Business,” WEF, Geneva, Switzerland, New Nature Economy 

Report II, 2020. [Online]. Available: 

https://www3.weforum.org/docs/WEF_The_Future_Of_Natur

e_And_Business_2020.pdf 

[3] European Commission, “EU Biodiversity Strategy for 2030. 

Bringing nature back into our lives,” Brussels, 20.5.2020 COM 

380 final, 2020. 

[4] A. Legakis and P. Maragos, The Red Book of endangered 

animals of Greece. 2009. Accessed: Dec. 23, 2023. [Online]. 

Available: https://portals.iucn.org/library/node/29036 

[5] WWF, “GREECE – A RICH COUNTRY,” WWF 

FACTSHEET BIOLOGICAL DIVERSITY. [Online]. 

Available: 

https://www.contentarchive.wwf.gr/images/pdfs/biodiversity-

gr.pdf 

[6] G. M. Buchanan, A. Nelson, P. Mayaux, A. Hartley, and P. F. 

Donald, “Delivering a Global, Terrestrial, Biodiversity 

Observation System through Remote Sensing,” Conserv. Biol., 

vol. 23, no. 2, pp. 499–502, 2009, doi: 10.1111/j.1523-

1739.2008.01083.x. 

[7] C. S. Reddy, “Remote sensing of biodiversity: what to measure 

and monitor from space to species?,” Biodivers. Conserv., vol. 

30, no. 10, pp. 2617–2631, Aug. 2021, doi: 10.1007/s10531-

021-02216-5. 

[8] P. Kacic and C. Kuenzer, “Forest Biodiversity Monitoring 

Based on Remotely Sensed Spectral Diversity—A Review,” 

Remote Sens., vol. 14, no. 21, Art. no. 21, Jan. 2022, doi: 

10.3390/rs14215363. 

[9] A. I. Marín, D. Abdul Malak, A. Bastrup-Birk, G. Chirici, A. 

Barbati, and S. Kleeschulte, “Mapping forest condition in 

Europe: Methodological developments in support to forest 

biodiversity assessments,” Ecol. Indic., vol. 128, p. 107839, 

Sep. 2021, doi: 10.1016/j.ecolind.2021.107839. 

[10] F. Parisi et al., “Sentinel-2 time series analysis for monitoring 

multi-taxon biodiversity in mountain beech forests,” Front. 

For. Glob. Change, vol. 6, 2023, Accessed: Dec. 18, 2023. 

[Online]. Available: 

https://www.frontiersin.org/articles/10.3389/ffgc.2023.10204

77 

[11] A. Lausch et al., “Linking Earth Observation and taxonomic, 

structural and functional biodiversity: Local to ecosystem 

perspectives,” Ecol. Indic., vol. 70, pp. 317–339, Nov. 2016, 

doi: 10.1016/j.ecolind.2016.06.022. 

[12] R. Wang and J. A. Gamon, “Remote sensing of terrestrial plant 

biodiversity,” Remote Sens. Environ., vol. 231, p. 111218, Sep. 

2019, doi: 10.1016/j.rse.2019.111218. 

[13] M. Torresani et al., “Estimating tree species diversity from 

space in an alpine conifer forest: The Rao’s Q diversity index 

meets the spectral variation hypothesis,” Ecol. Inform., vol. 52, 

pp. 26–34, Jul. 2019, doi: 10.1016/j.ecoinf.2019.04.001. 

[14] L. S. Farwell, P. R. Elsen, E. Razenkova, A. M. Pidgeon, and 

V. C. Radeloff, “Habitat heterogeneity captured by 30-m 

resolution satellite image texture predicts bird richness across 

the United States,” Ecol. Appl., vol. 30, no. 8, p. e02157, 2020, 

doi: 10.1002/eap.2157. 

[15] A. Retallack, G. Finlayson, B. Ostendorf, K. Clarke, and M. 

Lewis, “Remote sensing for monitoring rangeland condition: 

Current status and development of methods,” Environ. Sustain. 

Indic., vol. 19, p. 100285, Sep. 2023, doi: 

10.1016/j.indic.2023.100285. 

[16] B. Zhang et al., “Remotely sensed big data: evolution in model 

development for information extraction [point of view],” Proc. 

IEEE, vol. 107, no. 12, pp. 2294–2301, Dec. 2019, doi: 

10.1109/JPROC.2019.2948454. 

[17] V. C. F. Gomes, G. R. Queiroz, and K. R. Ferreira, “An 

Overview of Platforms for Big Earth Observation Data 

Management and Analysis,” Remote Sens., vol. 12, no. 8, Art. 

no. 8, Jan. 2020, doi: 10.3390/rs12081253. 

[18] M. B. J. Purss et al., “Unlocking the Australian Landsat 

Archive – From dark data to High Performance Data 

infrastructures,” GeoResJ, vol. 6, pp. 135–140, Jun. 2015, doi: 

10.1016/j.grj.2015.02.010. 

[19] N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, 

and R. Moore, “Google Earth Engine: Planetary-scale 

geospatial analysis for everyone,” Remote Sens. Environ., vol. 

202, pp. 18–27, 2017, doi: 10.1016/j.rse.2017.06.031. 

[20] E. Pebesma et al., “openEO: an open API for cloud-based big 

Earth Observation processing platforms,” p. 4957, Apr. 2018. 

[21] B. Killough, “Overview of the Open Data Cube Initiative,” in 

IGARSS 2018 - 2018 IEEE International Geoscience and 

Remote Sensing Symposium, IEEE, 2018, pp. 8629–8632. doi: 

10.1109/IGARSS.2018.8517694. 

[22] M. Sudmanns et al., “Think global, cube local: an Earth 

Observation Data Cube’s contribution to the Digital Earth 

vision,” Big Earth Data, vol. 7, no. 3, pp. 831–859, Jul. 2023, 

doi: 10.1080/20964471.2022.2099236. 

[23] “Overview,” Open Data Cube. Accessed: Dec. 20, 2023. 

[Online]. Available: https://www.opendatacube.org/overview 

[24] A. Lewis et al., “The Australian Geoscience Data Cube — 

Foundations and lessons learned,” Remote Sens. Environ., vol. 

202, pp. 276–292, 2017, doi: 10.1016/j.rse.2017.03.015. 

[25] B. Killough, “The Impact of Analysis Ready Data in the Africa 

Regional Data Cube,” in IGARSS 2019 - 2019 IEEE 

International Geoscience and Remote Sensing Symposium, 

IEEE, 2019, pp. 5646–5649. doi: 

10.1109/IGARSS.2019.8898321. 

[26] G. Giuliani et al., “Building an Earth Observations Data Cube: 

lessons learned from the Swiss Data Cube (SDC) on generating 

Analysis Ready Data (ARD),” Big Earth Data, vol. 1, no. 1–2, 

pp. 100–117, 2017, doi: 10.1080/20964471.2017.1398903. 

[27] K. R. Ferreira et al., “Earth Observation Data Cubes for Brazil: 

Requirements, Methodology and Products,” Remote Sens., vol. 

12, no. 24, p. 4033, 2020, doi: 10.3390/rs12244033. 

[28] C. Ariza-Porras et al., “CDCol: A Geoscience Data Cube that 

Meets Colombian Needs,” in Advances in Computing, vol. 

735, A. Solano and H. Ordoñez, Eds., in Communications in 

Computer and Information Science, vol. 735. , Cham: Springer 

International Publishing, 2017, pp. 87–99. doi: 10.1007/978-3-

319-66562-7_7. 

[29] J. Maso, A. Zabala, I. Serral, and X. Pons, “A Portal Offering 

Standard Visualization and Analysis on top of an Open Data 

Cube for Sub-National Regions: The Catalan Data Cube 

Example,” Data, vol. 4, no. 3, p. 96, Jul. 2019, doi: 

10.3390/data4030096. 

[30] T. Dhu et al., “National Open Data Cubes and Their 

Contribution to Country-Level Development Policies and 

Practices,” Data, vol. 4, no. 4, p. 144, 2019, doi: 

10.3390/data4040144. 

7909



[31] M. Craglia et al., “Digital Earth 2020: towards the vision for 

the next decade,” Int. J. Digit. Earth, vol. 5, no. 1, pp. 4–21, 

Jan. 2012, doi: 10.1080/17538947.2011.638500. 

[32] F. Baret, J. G. P. W. Clevers, and M. D. Steven, “The 

robustness of canopy gap fraction estimates from red and near-

infrared reflectances: A comparison of approaches,” Remote 

Sens. Environ., vol. 54, no. 2, pp. 141–151, Nov. 1995, doi: 

10.1016/0034-4257(95)00136-O. 

[33] N. Pettorelli, J. O. Vik, A. Mysterud, J.-M. Gaillard, C. J. 

Tucker, and N. C. Stenseth, “Using the satellite-derived NDVI 

to assess ecological responses to environmental change,” 

Trends Ecol. Evol., vol. 20, no. 9, pp. 503–510, Sep. 2005, doi: 

10.1016/j.tree.2005.05.011. 

[34] J. Cabello et al., “The ecosystem functioning dimension in 

conservation: insights from remote sensing,” Biodivers. 

Conserv., vol. 21, no. 13, pp. 3287–3305, Dec. 2012, doi: 

10.1007/s10531-012-0370-7. 

[35] D. Weber, G. Schaepman-Strub, and K. Ecker, “Predicting 

habitat quality of protected dry grasslands using Landsat NDVI 

phenology,” Ecol. Indic., vol. 91, pp. 447–460, Aug. 2018, doi: 

10.1016/j.ecolind.2018.03.081. 

[36] S. Rapinel, E. Fabre, S. Dufour, D. Arvor, C. Mony, and L. 

Hubert-Moy, “Mapping potential, existing and efficient 

wetlands using free remote sensing data,” J. Environ. Manage., 

vol. 247, pp. 829–839, Oct. 2019, doi: 

10.1016/j.jenvman.2019.06.098. 

[37] H. Jin and L. Eklundh, “A physically based vegetation index 

for improved monitoring of plant phenology,” Remote Sens. 

Environ., vol. 152, pp. 512–525, Sep. 2014, doi: 

10.1016/j.rse.2014.07.010. 

[38] E. Boegh et al., “Airborne multispectral data for quantifying 

leaf area index, nitrogen concentration, and photosynthetic 

efficiency in agriculture,” Remote Sens. Environ., vol. 81, no. 

2, pp. 179–193, Aug. 2002, doi: 10.1016/S0034-

4257(01)00342-X. 

[39] C. E. Shannon, “A mathematical theory of communication,” 

Bell Syst. Tech. J., vol. 27, no. 3, pp. 379–423, Jul. 1948, doi: 

10.1002/j.1538-7305.1948.tb01338.x. 

[40] J.-B. Féret and F. de Boissieu, “biodivMapR: An r package for 

α- and β-diversity mapping using remotely sensed images,” 

Methods Ecol. Evol., vol. 11, no. 1, pp. 64–70, 2020, doi: 

10.1111/2041-210X.13310. 

[41] M. L. Hobi et al., “A comparison of Dynamic Habitat Indices 

derived from different MODIS products as predictors of avian 

species richness,” Remote Sens. Environ., vol. 195, pp. 142–

152, Jun. 2017, doi: 10.1016/j.rse.2017.04.018. 

[42] A. Huete, K. Didan, T. Miura, E. P. Rodriguez, X. Gao, and L. 

G. Ferreira, “Overview of the radiometric and biophysical 

performance of the MODIS vegetation indices,” Remote Sens. 

Environ., vol. 83, no. 1, pp. 195–213, Nov. 2002, doi: 

10.1016/S0034-4257(02)00096-2. 

[43] Z. Li et al., “Preliminary assessment of 20-m surface albedo 

retrievals from sentinel-2A surface reflectance and 

MODIS/VIIRS surface anisotropy measures,” Remote Sens. 

Environ., vol. 217, pp. 352–365, Nov. 2018, doi: 

10.1016/j.rse.2018.08.025. 

[44] D. Alcaraz, J. Paruelo, and J. Cabello, “Identification of current 

ecosystem functional types in the Iberian Peninsula,” Glob. 

Ecol. Biogeogr., vol. 15, no. 2, pp. 200–212, Mar. 2006, doi: 

10.1111/j.1466-822X.2006.00215.x. 

[45] X. Zeng, R. E. Dickinson, A. Walker, M. Shaikh, R. S. 

DeFries, and J. Qi, “Derivation and Evaluation of Global 1-km 

Fractional Vegetation Cover Data for Land Modeling,” J. 

Appl. Meteorol. Climatol., vol. 39, no. 6, pp. 826–839, Jun. 

2000, doi: 10.1175/1520-

0450(2000)039<0826:DAEOGK>2.0.CO;2. 

[46] P. Karkauskaite, T. Tagesson, and R. Fensholt, “Evaluation of 

the Plant Phenology Index (PPI), NDVI and EVI for Start-of-

Season Trend Analysis of the Northern Hemisphere Boreal 

Zone,” Remote Sens., vol. 9, no. 5, Art. no. 5, May 2017, doi: 

10.3390/rs9050485. 

[47] B. Smets et al., “HR-VPP Product User Manual Daily Raw 

Vegetation Indices,” Issue 1.1, May 2023. [Online]. Available: 

https://land.copernicus.eu/en/technical-library/algorithm-

theoretical-base-document-for-vegetation-indices/ 

[48] G. Giuliani, G. Camara, B. Killough, and S. Minchin, “Earth 

Observation Open Science: Enhancing Reproducible Science 

Using Data Cubes,” Data, vol. 4, no. 4, p. 147, 2019, doi: 

10.3390/data4040147. 

 

7910


